Originální popis anglicky:
exit, _Exit, _exit - terminate a process
Návod, kniha: POSIX Programmer's Manual
#include <stdlib.h>
void exit(int
status);
void _Exit(int
status);
#include <unistd.h>
void _exit(int
status);
For
exit() and
_Exit(): The functionality described on this
reference page is aligned with the ISO C standard. Any conflict between
the requirements described here and the ISO C standard is
unintentional. This volume of IEEE Std 1003.1-2001 defers to the
ISO C standard.
The value of
status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any
other value, though only the least significant 8 bits (that is,
status
& 0377) shall be available to a waiting parent process.
The
exit() function shall first call all functions registered by
atexit(), in the reverse order of their registration, except that a
function is called after any previously registered functions that had already
been called at the time it was registered. Each function is called as many
times as it was registered. If, during the call to any such function, a call
to the
longjmp() function is made that would terminate the call to the
registered function, the behavior is undefined.
If a function registered by a call to
atexit() fails to return, the
remaining registered functions shall not be called and the rest of the
exit() processing shall not be completed. If
exit() is called
more than once, the behavior is undefined.
The
exit() function shall then flush all open streams with unwritten
buffered data, close all open streams, and remove all files created by
tmpfile(). Finally, control shall be terminated with the consequences
described below.
The
_Exit() and
_exit() functions shall be functionally
equivalent.
The
_Exit() and
_exit() functions shall not call functions
registered with
atexit() nor any registered signal handlers. Whether
open streams are flushed or closed, or temporary files are removed is
implementation-defined. Finally, the calling process is terminated with the
consequences described below.
These functions shall terminate the calling process with the following
consequences:
- Note:
- These consequences are all extensions to the ISO C
standard and are not further CX shaded. However, XSI extensions are
shaded.
- *
- All of the file descriptors, directory streams,
conversion descriptors, and message catalog descriptors
open in the calling process shall be closed.
- *
- If the parent process of the calling process is executing a
wait() or waitpid(), and has neither set its
SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it shall be notified of the
calling process' termination and the low-order eight bits (that is, bits
0377) of status shall be made available to it. If the parent is not
waiting, the child's status shall be made available to it when the parent
subsequently executes wait() or waitpid().
The semantics of the
waitid() function shall be equivalent to
wait().
- *
- If the parent process of the calling process is not
executing a wait() or waitpid(), and has neither set
its SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling process
shall be transformed into a zombie process. A zombie
process is an inactive process and it shall be deleted at some later
time when its parent process executes wait() or
waitpid().
The semantics of the
waitid() function shall be equivalent to
wait().
- *
- Termination of a process does not directly terminate its
children. The sending of a SIGHUP signal as described below indirectly
terminates children in some circumstances.
- *
- Either:
If the implementation supports the SIGCHLD signal, a SIGCHLD shall be sent to
the parent process.
Or:
If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN,
the status shall be discarded, and the lifetime of the calling process shall
end immediately. If SA_NOCLDWAIT is set, it is implementation-defined whether
a SIGCHLD signal is sent to the parent process.
- *
- The parent process ID of all of the calling process'
existing child processes and zombie processes shall be set to the process
ID of an implementation-defined system process. That is, these processes
shall be inherited by a special system process.
- *
- Each attached shared-memory segment is detached and the
value of shm_nattch (see shmget()) in the data structure
associated with its shared memory ID shall be decremented by 1.
- *
- For each semaphore for which the calling process has set a
semadj value (see semop() ), that value shall be added to
the semval of the specified semaphore.
- *
- If the process is a controlling process, the SIGHUP signal
shall be sent to each process in the foreground process group of the
controlling terminal belonging to the calling process.
- *
- If the process is a controlling process, the controlling
terminal associated with the session shall be disassociated from the
session, allowing it to be acquired by a new controlling process.
- *
- If the exit of the process causes a process group to become
orphaned, and if any member of the newly-orphaned process group is
stopped, then a SIGHUP signal followed by a SIGCONT signal shall be sent
to each process in the newly-orphaned process group.
- *
- All open named semaphores in the calling process shall be
closed as if by appropriate calls to sem_close().
- *
- Any memory locks established by the process via calls to
mlockall() or mlock() shall be removed. If locked pages in
the address space of the calling process are also mapped into the address
spaces of other processes and are locked by those processes, the locks
established by the other processes shall be unaffected by the call by this
process to _Exit() or _exit().
- *
- Memory mappings that were created in the process shall be
unmapped before the process is destroyed.
- *
- Any blocks of typed memory that were mapped in the calling
process shall be unmapped, as if munmap() was implicitly called to
unmap them.
- *
- All open message queue descriptors in the calling process
shall be closed as if by appropriate calls to mq_close().
- *
- Any outstanding cancelable asynchronous I/O operations may
be canceled. Those asynchronous I/O operations that are not canceled shall
complete as if the _Exit() or _exit() operation had not yet
occurred, but any associated signal notifications shall be suppressed. The
_Exit() or _exit() operation may block awaiting such I/O
completion. Whether any I/O is canceled, and which I/O may be canceled
upon _Exit() or _exit(), is implementation-defined.
- *
- Threads terminated by a call to _Exit() or
_exit() shall not invoke their cancellation cleanup handlers or
per-thread data destructors.
- *
- If the calling process is a trace controller process, any
trace streams that were created by the calling process shall be shut down
as described by the posix_trace_shutdown() function, and any
process' mapping of trace event names to trace event type identifiers
built for these trace streams may be deallocated.
These functions do not return.
No errors are defined.
The following sections are informative.
None.
Normally applications should use
exit() rather than
_Exit() or
_exit().
Early proposals drew a distinction between normal and abnormal process
termination. Abnormal termination was caused only by certain signals and
resulted in implementation-defined "actions", as discussed below.
Subsequent proposals distinguished three types of termination:
normal
termination (as in the current specification),
simple abnormal
termination, and
abnormal termination with actions. Again the
distinction between the two types of abnormal termination was that they were
caused by different signals and that implementation-defined actions would
result in the latter case. Given that these actions were completely
implementation-defined, the early proposals were only saying when the actions
could occur and how their occurrence could be detected, but not what they
were. This was of little or no use to conforming applications, and thus the
distinction is not made in this volume of IEEE Std 1003.1-2001.
The implementation-defined actions usually include, in most historical
implementations, the creation of a file named
core in the current
working directory of the process. This file contains an image of the memory of
the process, together with descriptive information about the process, perhaps
sufficient to reconstruct the state of the process at the receipt of the
signal.
There is a potential security problem in creating a
core file if the
process was set-user-ID and the current user is not the owner of the program,
if the process was set-group-ID and none of the user's groups match the group
of the program, or if the user does not have permission to write in the
current directory. In this situation, an implementation either should not
create a
core file or should make it unreadable by the user.
Despite the silence of this volume of IEEE Std 1003.1-2001 on this
feature, applications are advised not to create files named
core
because of potential conflicts in many implementations. Some implementations
use a name other than
core for the file; for example, by appending the
process ID to the filename.
It is important that the consequences of process termination as described occur
regardless of whether the process called
_exit() (perhaps indirectly
through
exit()) or instead was terminated due to a signal or for some
other reason. Note that in the specific case of
exit() this means that
the
status argument to
exit() is treated in the same way as the
status argument to
_exit().
A language other than C may have other termination primitives than the
C-language
exit() function, and programs written in such a language
should use its native termination primitives, but those should have as part of
their function the behavior of
_exit() as described. Implementations in
languages other than C are outside the scope of this version of this volume of
IEEE Std 1003.1-2001, however.
As required by the ISO C standard, using
return from
main()
has the same behavior (other than with respect to language scope issues) as
calling
exit() with the returned value. Reaching the end of the
main() function has the same behavior as calling
exit(0).
A value of zero (or EXIT_SUCCESS, which is required to be zero) for the argument
status conventionally indicates successful termination. This
corresponds to the specification for
exit() in the ISO C
standard. The convention is followed by utilities such as
make and
various shells, which interpret a zero status from a child process as success.
For this reason, applications should not call
exit(0) or
_exit(0) when they terminate unsuccessfully; for example, in
signal-catching functions.
Historically, the implementation-defined process that inherits children whose
parents have terminated without waiting on them is called
init and has
a process ID of 1.
The sending of a SIGHUP to the foreground process group when a controlling
process terminates corresponds to somewhat different historical
implementations. In System V, the kernel sends a SIGHUP on termination of
(essentially) a controlling process. In 4.2 BSD, the kernel does not send
SIGHUP in a case like this, but the termination of a controlling process is
usually noticed by a system daemon, which arranges to send a SIGHUP to the
foreground process group with the
vhangup() function. However, in 4.2
BSD, due to the behavior of the shells that support job control, the
controlling process is usually a shell with no other processes in its process
group. Thus, a change to make
_exit() behave this way in such systems
should not cause problems with existing applications.
The termination of a process may cause a process group to become orphaned in
either of two ways. The connection of a process group to its parent(s) outside
of the group depends on both the parents and their children. Thus, a process
group may be orphaned by the termination of the last connecting parent process
outside of the group or by the termination of the last direct descendant of
the parent process(es). In either case, if the termination of a process causes
a process group to become orphaned, processes within the group are
disconnected from their job control shell, which no longer has any information
on the existence of the process group. Stopped processes within the group
would languish forever. In order to avoid this problem, newly orphaned process
groups that contain stopped processes are sent a SIGHUP signal and a SIGCONT
signal to indicate that they have been disconnected from their session. The
SIGHUP signal causes the process group members to terminate unless they are
catching or ignoring SIGHUP. Under most circumstances, all of the members of
the process group are stopped if any of them are stopped.
The action of sending a SIGHUP and a SIGCONT signal to members of a newly
orphaned process group is similar to the action of 4.2 BSD, which sends SIGHUP
and SIGCONT to each stopped child of an exiting process. If such children exit
in response to the SIGHUP, any additional descendants receive similar
treatment at that time. In this volume of IEEE Std 1003.1-2001,
the signals are sent to the entire process group at the same time. Also, in
this volume of IEEE Std 1003.1-2001, but not in 4.2 BSD, stopped
processes may be orphaned, but may be members of a process group that is not
orphaned; therefore, the action taken at
_exit() must consider
processes other than child processes.
It is possible for a process group to be orphaned by a call to
setpgid()
or
setsid(), as well as by process termination. This volume of
IEEE Std 1003.1-2001 does not require sending SIGHUP and SIGCONT
in those cases, because, unlike process termination, those cases are not
caused accidentally by applications that are unaware of job control. An
implementation can choose to send SIGHUP and SIGCONT in those cases as an
extension; such an extension must be documented as required in
<signal.h>.
The ISO/IEC 9899:1999 standard adds the
_Exit() function that
results in immediate program termination without triggering signals or
atexit()-registered functions. In IEEE Std 1003.1-2001,
this is equivalent to the
_exit() function.
None.
atexit() ,
close() ,
fclose() ,
longjmp() ,
posix_trace_shutdown() ,
posix_trace_trid_eventid_open() ,
semop() ,
shmget() ,
sigaction() ,
wait() ,
waitid() ,
waitpid() , the Base Definitions volume of
IEEE Std 1003.1-2001,
<stdlib.h>,
<unistd.h>
Portions of this text are reprinted and reproduced in electronic form from IEEE
Std 1003.1, 2003 Edition, Standard for Information Technology -- Portable
Operating System Interface (POSIX), The Open Group Base Specifications Issue
6, Copyright (C) 2001-2003 by the Institute of Electrical and Electronics
Engineers, Inc and The Open Group. In the event of any discrepancy between
this version and the original IEEE and The Open Group Standard, the original
IEEE and The Open Group Standard is the referee document. The original
Standard can be obtained online at http://www.opengroup.org/unix/online.html
.